Y3 YALÇINBDRU
 "Energy, Economy, Ecology"

About Us

YALÇIN BORU JEOTERMAL, subordinate to Doğan Jeotermal Group of Companies that carries on activities in the energy, construction and tourism industry as a leading corporation, was founded in 1997 on a field of 23000 m 2 in Polatlı Organised Industry Region, in order to meet the needs of the industry at the top level. YALÇIN BORU carries out the manufacturing of preinsulated (geothermal) pipes and fittings, steam pipes and fittings, polyethylene pipes and fittings.

YALÇIN BORU JEOTERMAL, which has become the industry leader in a short time, has enhanced its standards using the technology that is the requirement of the era, and achieved the standards TS EN 253, TS EN 12201-2, TS EN 448 with its staff specialised in their fields.

In addition, rendering service in accordance with the standard TS EN ISO 9001, YALÇIN BORU JEOTERMAL has adopted the concept of high quality production and service, and accordingly has avoided making compromises from customer satisfaction.

As YALÇIN BORU JEOTERMAL, our objective is to increase our production capacity and product range, and provide benefits to our country and our national economy.

Our Vision

Vision of Yalçın Boru is to provide the energy and the raw material to be used more efficiently for protecting the ecological balance in our globalising world, and continuously improving the production technologies, processes and quality management systems and developing new product designs and finding new fields of studies for itself, to be one of the leading companies of the world in the geothermal industry.

Our Mission

Yalçın Boru, which carries out the activities on preinsulated pipes and fittings and polyethylene pipes in accordance with the relevant standards, has adopted as its mission to contribute to the national economy and to render high quality services on many fields such as localised heating systems, cogeneration plants, boiling oil and steam transmitting plants, industrial and chemical plants, greenhouse heating systems, cold water networks, underground heating and ventilating, geothermal plants by fulfilling the Legislation on OHS and Environment and all of its liabilities.

Our Quality Policy

In line with its principles on being trustable and preferable in the geothermal industry, Yalçın Boru keeps its understanding of high quality service on the foreground and renders services with modern and technological equipment, in accordance with internationally recognised standards (TS EN 253, TS EN 12201-2, TS EN 448), under terms that are mutually agreed with the customers, with accurate and precise results.

As Yalçn Boru, customer satisfaction is our principle of incorporation. With the responsibility of performing production that can meet the customer needs, quality is assured at Yalçın Boru at all stages of production starting from the inputs, and continues as after-sales service as well.

Core value at Yalçn Boru is the human. In order to render this value more effective and efficient, trainings that are required at all levels are planned.

The quality policy of Yalçn Boru is to provide the continuity of our management systems (ISO 9001- ISO 14001 - OHSAS 18001) by improving them, and to become an exemplary organisation at a level that can meet the requirements of this industry by providing the sources needed by the country in the geothermal industry.

Customer Satisfaction

As Yalçın Boru, our purpose is to meet the needs and expectations of our customers in a timely manner and as desired and to provide and increase our customers' satisfaction with our technical support and after-sales services. We make no compromises on the standards of TS EN 253, TS EN 12201-2, TS EN 448 and ISO 9001 in our customer satisfaction policy.

Regarding the products and services rendered by our company in Yalçın Boru, all kinds of recommendations, complaints and requests are reviewed within the shortest time and feedbacks are provided to our customers along with the recommendations of solutions.

Your recommendations, complaints and requests are assessed as opportunities of improvement and development continuously in all of our work processes.

Check-In Quality Control

All kinds of raw materials and supplementary materials received from our suppliers are applied checkin quality control tests according to the standards determined by Yalçın Boru.

Process Quality Control

The raw materials and supplementary materials which are approved as suitable for manufacturing and the samples taken from the manufacturing processes and the process at the manufacturing are subjected to quality control tests and are periodically taken under record.

The process quality control tests applied at Yalçın Boru are:

Physical Compliance
and Chemical Compliance tests.

Final Quality Control

Following the packing of our products that are quality approved;

Labelling control and
Packing bond control
Conformity to transport controls is made and transport is allowed after then.

Quality

Management
Yalçın Boru has assured ISO 9001:2008 Total Quality Management System, OHSAS 18001 Occupational Health and Safety Management System and ISO 14001 Environment Management System, and manufacturing processes and all processes that are related to these processes.

Yalçın Boru has adopted a safe manufacturing with ISO 9001 Total Quality Management System and OHSAS 18001 Occupational Health and Safety Management System, and an environment friendly manufacturing with ISO 14001 Environment Management System.

At Yalçın Boru, which aims to continuously improve the process quality, within the frame of continuous improvement principle;

Materials that are qualified and suitable for recycle are used at each step of manufacturing,

All national and international standards and legal liabilities are pursued,

Environment and OHS risks in the working environment are continuously assessed and minimised,

Trainings on all necessary subjects are provided to our personnel,

Production flow is assessed and enhanced at all stages.

Environment and OHS Policy

Carrying out production within the scope of "Environment and OHS Management System" since its foundation, Yalçın Boru provides the safety of soul, goods and environment at the level of international standards of Environment and OHS Management System (ISO 14001, OHSAS 18001) and produces and implements rapid and trustable solutions for the potential problems, and have had approved the Environment and OHS awareness with the documents it has achieved.

Yalçın Boru endeavours to take the required measures before encountering with problems with the purpose of identifying all operations carried out and the exposed OHS risks within the process from order requests from customers to the completion of their transfers, and preventing their scopes and the risks to emerge and reducing them at an acceptable level.

Continuously improving the Environment and OHS Management Programs and making the remedial activities the natural behaviours of all personnel constitute the fundamental of the Environment and OHS Policy of Yalçın Boru.

ONLINE CORONA UNIT

- HEATING \& COOLING $>$ Heating and Cooling Systems

İGA \& MNG TESİSAT - ISTANBUL 3RD AIRPORT
ISTANBUL MAPET INȘAAT - BAKU AIRPORT AZERBAIJAN
TANAP CAMPING SITES ESKISEHIR, ERZURUM, ERZINCAN
CINER GRUP PARK HOLDING ANKARA
RÖNESANS HOLDING - PRESIDENTIAL PALACE ANKARA

DOĞUȘ HOLDING - 23RD WORLD UNIVERSITY OLYMPIC
GAMES OLYMPIC VILLAGE
iZMIR
SANKO HOLDİNG
GAZIANTEP
ENKA HOLDİNG - SAKHALIN ISLAND
RUSSIA
GAMA HOLDING ANKARA
KOLIN INSTAAT ANKARA
YILDIZLAR HOLDING
OYAK - RENAULT FACTORY
TOFAS FACTORY
OTOKAR A.Ș. FACTORY
VESTEL A.Ș. FACTORY
INDESIT A.S.
VALF SANAYI A.Ș. FACTORY
SIISECAM FACTORY
HITIT SERAMIK FACTORY
ANKARA
BURSA
BURSA SAKARYA MANISA MANISA MANISA ANKARA

USAK
ANKARA
PIDOSAN A.S
ESKIȘEHIR ȘEKER FACTORY
ESKISEHIR KÜTAHYA
ESKISEHIR
K.K.T.C.

ESKISEHIR
KAYSERI ERZURUM

AFYON
KUTAHYA
ANKARA
ANKARA
MALATYA
BURSA
SíLivRi PENAL INSTITUTION
MENEMEN PENAL INSTITUTION
VAN PENAL INSTITUTION
OSMANIYE PENAL INSTITUTION
ISTANBUL
iZMIR
VAN

KIRKLARELI PENAL INSTITUTION
OSMANIYE

POLATLI PUBLIC HOSPITAL
KIRKLARELI
ANKARA
SALİHLI PUBLIC HOSPITAL
MANISA
HOUSING DEVELOPMENT
ANKARA, ADAPAZARI, YOZGAT, ESKIȘEHIR, BURSA, DENiZLi
ADMINISTRATION OF TURKEY
HEATING \& COOLING > Power Plant Resourced District Heating Systems

-C HEATING \& COOLING > Geothermal Resourced District Heating Systems

iZMIR JEOTERMAL A.S. iZMIR
AFYON JEOTERMALA.S. AFYON
SANDIKLI JEOTERMAL A.S. AFYON
DİYADIN JEOTERMAL A.SS. AĞRI
dikiLi Jeotermal A.s. IZMIR
KOZTURTAST JEOTERMAL A.Ș. NEVȘEHIR
EDREMIT JEOTERMAL A.Ș.BALIKESIIR
KIZILCAHAMAM JEOTERMAL A.S. ANKARA
BIGADIC MUNICIPALITYSORGUN MUNICIPALITYBALIKESIRYOZGAT
GÜRE MUNICIPALITY
IZMIR
KÜTAHYAKÜTAHYA
KÜTAHYA
MANISA
NEVȘEHIR
${ }^{\circ}$ C HEATING \& COOLING > Thermal Water Transmission Systems
AFYON AFYON JEOTERMAL A.S.
BURSA
BURSA
BOLU MUNICIPALITY BOLU
HAYMANA MUNICIPALITY ANKARA
TERMAL MUNICIPALITY YALOVA
YALOVA MUNICIPALITY YALOVA
ARMUTLU MUNICIPALITY YALOVA

THERMAL TOURISM

NARVEN THERMAL TOWN GRANNOS THERMAL
ARGOS INN CAPPADOCIA
HELINAMIN THERMAL
HITIT AYAS THERMAL HOLIDAY RESORT
HATTUSTA ASTYRA THERMAL RESORT \& SPA
ERZIN ISOS THERMAL
SAROT THERMAL
BOLU
HAYMANA / ANKARA
NEVŞEHIR
CERMIK, DIYARBAKIR
ANKARA
EDREMIT, BALIKESİR
ERZIN, HATAY
ALYA GORDION
BOLU
AĞRI DIYADİN THERMAL
ANKARA
AĞRI

4 ENERGY \& COGENERATION

KARADENIZ HoLDiNG - Karadeniz Enerji A.Ș.
SARAY HOLDING \& ACARSAN HOLDING - Greeneco Eneri A.S.
MTN ENERJi ELEKTRIK ÜRETIM A.Ș.
C̣ELIKLER HOLDING - Çelikler Jeotermal A.S.
TURKERLER HOLDING - Türkerler Jeotermal A.S.
KIPAS HOLDING - Maren Enerji A.S.
KIPAS HOLDING - Ken Kipas Enerji A.S.
AKCA HOLDING - Akca Enerji A.S.
MB HOLDING - Menderes Jeotermal A.S.
BEREKET ENERJI - Kizildere Geothermal Energy Power Plant
BEREKET ENERJI - Yatağan Thermal Power Plant
ZORLU ENERJi
AK ENERJI
MOSB ENERJI
TÜPRAS
ÇERKEZKÖY ENERJI
AYDIN
DENIZLI
ÇANAKKALE
PAMUKOREN, AYDIN
ALASEHIR, MANISA
GERMENCIK, AYDIN
GERMENCIK, AYDIN
SARAYKÖY, DENIZLI
SULTANHISAR, AYDIN
DENIZLI
MUĞLA LÜLEBURGAZ ÇERKEZKOY MANISA iZMIR
MODERN ENERJI
C̣ERKEZKÖY
İTIKBAL ENERJI GRUP
TEKIRDAĞ
KARPEK ENERJI
GLOBAL ENERJI
CAN TEKSTIL
SOLFIN ENERJI
KAYSERI
MANISA
MAMBA
ISTANBUL
TEKIRDAĞ
istanbul
BM HOLDING

GREENHOUSING

EMINEL TARIM
KONYA STEKER A.ST.
BAȘYAZICIOĞLU TARIM
AGROBAY GREENHOUSING
SMYRNA GREENHOUSING
BM HOLDING - BM Agro Seracılik A.S.
ALMER TEKSTIL
LARA TARIM
BOSTAN TARIM
AFYON
C̦UMRA, KONYA

KONYALILAR GREENHOUSING

BOGAZLIYAN, YOZGAT
DİKILİ, IZMIR
SARAYKÖY, DENIZLİ
SÖKE, AYDIN
KOZAKLI, NEVȘEHIR
GAZIANTEP
MANISA
ISTANBUL

MARITIME

MADENCI SHIPYARD
ÇELIK TEKNE SHIPYARD
RMK MARINE
ADRAZHAN SHIPYARD
MED MARINE
DORA DENIZCILİK
KGS DENIZCILIK
FORCE SHIPPING
KARADENIZ EREĞLİ, ZONGULDAK TUZLA, ISTANBUL TUZLA, ISTANBUL
TUZLA, ISTANBUL
TUZLA, ISTANBUL
TUZLA, ISTANBUL
ISTANBUL
isTANBUL

GENERAL PROPERTIES OF PREINSULATED PIPES

It is a waterproof system by means of insulation and the extruded HDPE casing pipe that protects the steel pipe from corrosive media, humidity, chemicals and UV rays.

Standard typre insulated pipes have an operating life of 30 years at $120^{\circ} \mathrm{C}$ continuous service temperature, and 50 years and more at temperatures up to $115{ }^{\circ} \mathrm{C}$.

The covalent bonds that form due to the Corona process applied, increase the inner surface tension of the HDPE casing pipe (polyethylene), and provide better cohesive properties of polyurethane to the HDPE casing pipe (polyethylene pipe).

The polyurethane applied is procured from certificate owning companies conforming to TS EN 253 norm that carry out special manufacture for such type of pipes.

The standard type of preinsulated pipes are resistant up to $120^{\circ} \mathrm{C}\left(140{ }^{\circ} \mathrm{C}\right.$ as the peak value), and rock wool reinforced special manufacture preinsulated pipes up to $450^{\circ} \mathrm{C}$.

Steel, stainless steel, copper, FR PPR, PPR-C, PE-X and HDPE can be used as inner pipe (carrier pipe).

The rigid polyurethane foam that is used as the insulation material has the properties that can conduct the friction forces between the ground and outer pipe in order to meet the steel thermal expansion tensions.

It can be used in prestressed systems; hence the need for a compensator is minimised.

All fittings parts are manufactured as preinsulated.
The steel pipes are exposed to surface treatment (sanding) in SA 2 1/2 standards before insulation. For this reason, there are no elements such as stain and oil on the pipes and the pipes are protected against corrosion.

Since L, Z, U bends are not used in prestressed systems; there is no need for channel expansion in installation of these parts.

The ability to monitor the steel pipes and the insulation all year long by means of the preplaced monitoring (observing) wires inside the insulation material and the connected devices enables the detection of leakage at any point.

A manufacturing in accordance with the quality system certificate ISO 9001 that covers design and production is carried out.

It owns international certificates. (TS EN 253, TS EN 12201- 2 and TS EN 448.)

	CLASSICAL SYSTEM	PREINSULATED PIPE

STANDARD TYPE PREINSULATED PIPE

Standard type preinsulated pipes comprise three basic materials. Carrier pipes are established as steel, copper or plastic based according to the properties of the carried fluids. Casing pipes are manufactured from high density polyethylene (HDPE) raw material, with UV resistance, 100% waterproof and with online corona. There is the insulation material that is manufactured from polyurethane raw material between the carrier and casing pipes, and it prevents heat loss.

CARRIER PIPES

STEEL
Material P 235 TR1 - TR2, P235 GH, ST 37, ST 35,8, API 5L (Grade A-B), SCH 20-80
Standard EN 10217-1, EN 10217-2, EN 10216, EN 10255, EN 10220, API 5L
Certificate EN 10204-3.1
STAINLESS STEEL
AISI 304 L, AISI 316 L

PLASTIC
HDPE, PPR-C, FR PPR, EPOKSİ, PEX, PVC

TIN COATED COPPER WIRE (Monitoring Wire)

POLYURETHANE

Average Cell Size
< 0,5mm
Core Density
$\geq 60 \mathrm{~kg} / \mathrm{m}^{3}$
Total Density
$\geq 80 \mathrm{~kg} / \mathrm{m}^{3}$
Closed Cell
> \%88
Compressive Strength
$\geq 0,3 \mathrm{~N} / \mathrm{mm}^{2}$
Axial Cutting Strength $\geq 0,12 \mathrm{~N} / \mathrm{mm}^{2}$
Peripheral Cutting Strength
$\mathrm{N} / \mathrm{mm}^{2}(\geq 0,20)$
Thermal Conductivity Coefficient (at $50^{\circ} \mathrm{C}$) (<0,026 W/Mk)

HDPE PIPE (CASING PIPE)

Material

High Density Polyethylene
Standard
TS EN 253:2009 + A1 (TS EN 12201-2)
Density > $944 \mathrm{~kg} / \mathrm{m}^{3}$
Thermal Conductivity Coefficient W/Mk 0,43
Expansion Coefficient 2.10 1/K
Yield Strength > $19 \mathrm{~N} / \mathrm{mm}^{2}$
Melting Flow Rate (MFI) < 0,5 gr /10 min Thermal Stability $\left(\right.$ at $\left.210{ }^{\circ} \mathrm{C}\right)>20 \mathrm{~min}$
UV Resistant
Online Corona \qquad

COPPER WIRE (Signal Wire)

```
Low Temperature - 200 %}\textrm{C}-60\mp@subsup{}{}{\circ}\textrm{C
Normal Temperature - 60 *
High Temperature + 140 % C + 250 % C
```


INDUSTRIAL TYPE ROCKWOOL REINFRCED PREINSULATED PIPE (15 - Ø 800)

Double insulated pipes are specially manufactured for underground and above ground applications for the temperatures between $150^{\circ} \mathrm{C}$ and $650^{\circ} \mathrm{C}$.

Along with the high thermal insulation provided by double insulation, they have the properties of standard type preinsulated pipes.

CARRIER PIPES

TS EN 10216-2 P 235 GH
API 5 L X52 PSL2,
Grade B,X42, X46, X52, X56, X60, X65, X70

POLYURETHANE

CASING PIPES

| Total Density $>80 \mathrm{~kg} / \mathrm{m}^{3}$ | POLYETHYLENE |
| :--- | :--- | Core Density $>60 \mathrm{~kg} / \mathrm{m}^{3}$

ASTM A-53/ A106 GRADE A, GRADE B,

INSULATION TYPES

ROCKWOOL

High Temperature
Between $140^{\circ} \mathrm{C} / 650^{\circ} \mathrm{C}$

Standard Type

 Preinsulated Steel Pipe($\varnothing 15$ - $\varnothing 1200$)Preinsulated
PPR-C Pipe
(Ø 15 - Ø 200)

Fiberglass Reinforced PPR-C
Pipe (Ф 20 - Ф 630)

All steel pipes used in the manufacturing of preinsulated pipes must comply with the norms that are required by TS EN 253 standards.

In standard manufacturing, steel pipes manufactured according to the below norms and standards are used;

ERW Pipe Manufacturing Standards	Material Quality
TS EN 10217 1-2	P235 TR1 - TR2
TS EN 10255	P 195 T
ASTM A-53	GRADE A, GRADE B
DIN 17100/DIN 1626	St33, St37, St37.4, St35.8,
St45.8, St52	

SAW Pipe Manufacturing Standards	Material Quality
API 5L PSL1/ PSL2	X52 PSL2, Grade B,X42, X46, X52, X56, X60, X65, X70
TS EN 0217-5	P 195, P 235, P265 TR1/TR2
TS EN ISO 3183	X60 PSL2
ASTM A-53	GRADE A, GRADE B

PPR-C pipes manufactured in TS EN 15874 standards and PN 10 - PN 20 pressure ranges are preinsulated pipe types.

Fiberglass reinforced PPR pipes manufactured in ASTM F 2389 standards or equivalent recognised international standards (DIN 8077, DIN 16962 SKZ, etc.) are one of preinsulated pipe types.

HDPE pipes manufactured in TS EN 12201-2 and TS EN 253 standards and between PN 2.5 - PN 25 pressure ranges are one of preinsulated pipe types.

Stainless Steel Pipes manufactured in AISI 304/ 304 L and AISI 316 / 316 L standards are one of preinsulated pipe types.

Copper pipes manufacturer in TS EN 12449, TS EN 12735 , ASTMB68-B88 are on of preinsulated pipe types.

Other Types of Pipes
The variety of preinsulated pipe types expands on a wide range.
Galvanised steel pipes EN 10240 TS 11348, DIN 244, ASTM A 90,
ASTM A 53, SI 103, SI918, BS 729,
PEX [DIN 16892] pipes, CTP [AWA C950] etc.

Preinsulated HDPE Pipe ($\varnothing 50$ - \varnothing 1000)

Preinsulated Stainless Steel Pipe

Preinsulated

Copper Pipe
(Ø 15 - Ø 200)

POLYURETHANE INSULATION MATERIAL (PUR)

PUR is an insulation material with quite low thermal conductivity coefficient and formed with mixing polyurethane insulation material polyol and isocyanate at particular ratios.

PUR that is injected between the carrier pipe and casing pipe (HDPE) provides heat insulation besides enabling two pipes operating as one pipe by bonding them together. In the manufacturing of preinsulated pipes, PUR in TS EN 253 standards and having a uniform cell structure has to be used and the minimum conditions below have to be provided:

Material	Hard polyurethane foam composed of the mixing of polyol and isocyanate, having a homogeneous cell structure.
Average Cell Size	$<0.5 \mathrm{~mm}$.
Core Density	$>=60 \mathrm{~kg} . / \mathrm{m}^{3}$
Total Density	> $=80 \mathrm{~kg} . / \mathrm{m}^{3}$
Closed Cell	<\%88
Water Absorption at High Temperature	< \%10, It must not exceed the 10% of the original volume when tested according to TS EN 253 5.3.5.
Compressive Strength (at \%10 relative deformation)	$>=0.3 \mathrm{~N} / \mathrm{mm}^{2}$
Axial Cutting Strength	$>=0.12 \mathrm{~N} / \mathrm{mm}^{2}$
Peripheral Cutting Strength	$>=0.20 \mathrm{~N} / \mathrm{mm}^{2}$
Thermal Conductivity Coefficient (at ${ }^{\circ} \mathrm{C}$)	<0.28 W/mk
Service Life of Insulation according to Continuous Service Temperatures	3 years at $140^{\circ} \mathrm{C} \mid 30$ years at $120^{\circ} \mathrm{C}$ 50 years at $115^{\circ} \mathrm{C}$

The anti-oxidants inside the casing pipes, protecting the insulation material from external effects and chemicals have UV stabilisers and carbon black and have a density above 944 $\mathrm{kg} / \mathrm{m}^{3}$, and are exposed to online corona treatment.

The values required to be provided in the manufacturing of polyethylene pipes according to TS EN 253 standard have to be as below:

Material	Polyethylene (High Density) (
Density	Black (carbon black) $>$ $\% 2.5$ by mass
Colour	$>19 \mathrm{~N} / \mathrm{mm}^{2}$
Flow Strength	>2000 hours
Drawing Under Constant Load (CLT)	$<0.5 \mathrm{gr} / 10 \mathrm{~min}$.
Melting Flow rate	$>20 \mathrm{~min}$.
Thermal Stability (at 210 C)	$2.10^{-4} \mathrm{~K}^{-1}$
Expansion Coefficient	$0.43 \mathrm{~W} / \mathrm{mK}$
Thermal Conductivity Coefficient	TS EN 253
Min. Wall Thickness	Online must be applied.
Corona	

POLYETHYLENE CASING PIPE (HDPE)

USE OF
 PREINSULATED PIPES IN VESSEL BUILDING INDUSTRY

There are many advantages for choosing Yalçın Boru preinsulated pipes for vessels transporting chemical substances, dry cargo, bitumen, LNG, LPG NH3 and crude oil. As Yalçın Boru, we recommend preinsulated pipes for any applications of such as hot water, steam/condensate, boiling oil, bitumen, fire extinguishing equipment, salty water, LN, LPG, HFO, glycol and nitrogen on open decks and cargo areas. Our products are 100% waterproof, UV resistant, maintenance free and usable during the entire service lives of the vessels.

Yalçın Boru has developed an approach for the design and installation of preinsulated pipe systems in ship building applications. This approach is applicable on both the new vessels to be built, and in the restoration of the present lines in the vessels. The advantages of the preinsulated pipes are more apparent on the piping systems on decks. In order to avoid the conditions due to the effects of the salty water from waves, strong winds, rain, hot temperature and human traffic, preinsulated piping is an ideal solution.

Application	Asphalt, Sulfur Transportation	Containens Fishing Ships	VLCC, Connyer Tankers, FPSD	LPG, LEG\&LNG Transportation	Dry Cargo Chemical Tanks
Low Temperature $-200^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$	Cooling	Fuel oil, condense	Glycol	Liquid lines condense, Hot Fuel oil,	
Standard Temperature $-5^{\circ} \mathrm{C}-140^{\circ} \mathrm{C}$	Hot water condense	Steam	Steam boiling		
oil	Steam				
High Temperature $140^{\circ} \mathrm{C}-175^{\circ} \mathrm{C}$	Steam, Boiling Oil	Boiling Oil	Steam boiling oil	Steam, Boiling Oil	
High Temperature II $140^{\circ} \mathrm{C}-650^{\circ} \mathrm{C}$	Boiling Oil				

By means of the piping system we design for vessel building industry, manufacturing and delivery is provided fast and problem-free within precise tolerances generally in flanged connections. The system designed by the service of Yalçın Boru technical sales representatives will be completed on time and affordably. Due to the benefits stated below, this product is an ideal solution for choosing the preinsulated piping systems in maritime industry:

- 100% waterproof
- Low energy loss
- Casing pipe (HDPE) resistant against salt, chemicals and UV rays
- Rough-hard manufacture, high mechanical strength
- Protection of service/carrier pipe against corrosion
- Temperature range from -200 to +3150 C
- Support parts applicable on casing pipe surface

These technical properties are applicable for insulated piping systems manufactured by Yalçın Boru, and the system provides these benefits to vessel owners:

- Easy and fast building
- Optimum operating economy
- Low repair cost
- High environmental safety
- Minimum failure duration
- Long service life

YALCINBGRU

PREINSULATED
 PIPE AND FITTINGS

STEEL SERVICE PIPE					HDPE 100 CASING PIPE			INSULATION (PUR)	PACKAGE PIPE WEIGHT	STEELPIPEUNITWATERVOLUME	$\begin{array}{\|c\|} \hline \text { PIPE } \\ \text { LENGTH } \\ \text { (L) } \end{array}$
Steel Pipe Nominal Diameter		Outer	Inner	Wall	Outer	Inner	Wall				
		Diameter (d)	Diameter	Thickness	Diameter (d)	Diameter	Thickness	Thickness			
DN	inch	mm	mm	mm	m	mm	mm	mm	kg / m	It / m	m
15	1/2"	21,30	17,30	2,0	75	69,00	3,0	23,85	1,94	0,27	6
20	3/4"	26,90	21,70	2,6	90	84,00	3,0	28,55	2,74	0,37	6
25	1 "	33,70	28,50	2,6	90	84,00	3,0	25,15	3,15	0,67	6
32	$11 / 4^{\prime \prime}$	42,40	37,20	2,6	110	104,00	3,0	30,80	4,08	1,09	6
40	$11 / 2^{\prime \prime}$	48,30	43,10	2,6	110	104,00	3,0	27,85	4,43	1,46	6
50	2 "	60,30	54,50	2,9	125	119,00	3,0	29,35	5,87	2,33	6
65	$21 / 2^{\prime \prime}$	76,10	70,30	2,9	140	134,00	3,00	28,95	7,23	3,88	6-8
80	3 "	88,90	82,50	3,2	160	154,00	3,00	32,55	9,17	5,35	6-8
100	4"	114,30	107,10	3,6	200	193,60	3,20	39,65	13,25	9,01	6-8-12
125	5"	139,70	132,50	3,6	225	218,20	3,40	39,25	16,11	13,79	6-8-12
150	6 "	168,30	160,30	4,0	250	242,80	3,60	37,25	20,80	20,18	6-8-12
200	8"	219,10	210,10	4,5	315	306,80	4,10	43,85	30,54	34,67	6-8-12
250	$10^{\prime \prime}$	273,00	263,00	5,0	400	390,40	4,80	58,70	43,64	54,33	6-8-12
300	12"	323,00	311,80	5,6	450	439,60	5,20	58,30	56,45	76,80	6-8-12
350	$14^{\prime \prime}$	355,60	344,40	5,6	500	488,80	5,60	66,60	63,72	93,16	6-8-12
400	$16^{\prime \prime}$	406,40	393,80	6,3	560	548,00	6,00	70,80	80,63	121,80	6-8-12
450	$18 \prime$	457,20	444,60	6,3	630	616,80	6,60	79,80	93,16	155,25	6-8-12
500	20"	508,00	495,40	6,3	710	695,60	7,20	93,80	107,33	192,75	6-8-12
550	22 "	559,00	546,40	6,3	710	695,60	7,20	68,30	127,46	234,56	6-8-12
600	24"	610,00	595,80	7,1	800	784,20	7,90	87,10	139,61	278,80	6-8-12
700	28 "	711,00	696,80	7,1	900	882,60	8,70	85,80	192,4	379,37	6-8-12
800	32 "	813,00	795,40	8,8	1000	981,20	9,40	84,10	222,42	496,98	6-8-12
900	36"	914,00	894,00	10,0	1200	1178,00	11,00	132,00	307,8	627,72	6-8-12
1000	40"	1.106,00	1084,00	11	1200	1175,00	12,5	34,50	350,2	776,02	6-8-12
1200	48"	1.219,00	1194,00	12,5	1400	1372,00	14,0	76,50	463,9	923,44	6-8-12

*The data indicated in the table are for informative purposes. Yalçın Boru reserves its rights to modify these data.

SERIES-2 IN ACCORDANCE WITH TS EN 253 STANDARDS

STEEL SERVICE PIPE					HDPE 100 CASING PIPE			INSULATION	$\begin{aligned} & \text { PACKAGE } \\ & \text { PIPE } \\ & \text { WEIGHT } \end{aligned}$	$\begin{gathered} \text { STEEL } \\ \text { PIPE } \\ \text { UNIT } \\ \text { WATER } \\ \text { vOLUME } \end{gathered}$	$\begin{aligned} & \text { PIPE } \\ & \text { LENGTH } \\ & \text { (L) } \end{aligned}$
Steel Pipe Nominal Diameter		Outer	Inner	Wall	Outer	Inner	Wall	Thickness			
		Diameter (d)	Diameter	Thickness	Diameter (d)	Diameter	Thickness				
DN	inch	mm	mm	mm	mm	mm	mm	mm	kg / m	It / m	m
15	1/2"	21,30	17,30	2,0	90	84,00	3,0	31,35	2,23	0,27	6
20	3/4"	26,90	21,70	2,6	110	104,00	3,0	38,55	3,16	0,37	6
25	$1{ }^{\prime \prime}$	33,70	28,50	2,6	110	104,00	3,0	35,15	3,57	0,67	6
32	11/4"	42,40	37,20	2,6	125	119,00	3,0	38,30	4,43	1,09	6
40	11/2"	48,30	43,10	2,6	125	119,00	3,0	35,35	4,77	1,46	6
50	$2{ }^{\prime \prime}$	60,30	54,50	2,9	140	134,00	3,0	36,85	6,24	2,33	6
65	21/2"	76,10	70,30	2,9	160	154,00	3,00	38,95	7,78	3,88	6-8
80	3"	88,90	82,50	3,2	180	174,00	3,00	42,55	9,76	5,35	6-8
100	4"	114,30	107,10	3,6	225	218,20	3,40	51,95	14,14	9,01	6-8-12
125	5"	139,70	132,50	3,6	250	242,80	3,60	51,55	17,09	13,79	6-8-12
150	$6 "$	168,30	160,30	4,0	280	272,20	3,90	51,95	22,09	20,18	6-8-12
200	$8{ }^{\prime \prime}$	219,10	210,10	4,5	355	346,00	4,50	63,45	32,68	34,67	6-8-12
250	10"	273,00	263,00	5,0	450	439,60	5,20	83,30	46,97	54,33	6-8-12
300	12"	323,00	311,80	5,6	500	488,80	5,60	82,90	60,15	76,80	6-8-12
350	14"	355,60	344,40	5,6	560	548,00	6,00	96,20	68,64	93,16	6-8-12
400	$16 "$	406,40	393,80	6,3	630	616,80	6,60	105,20	87,02	121,80	6-8-12
450	18"	457,20	444,60	6,3	710	695,60	7,20	119,20	101,35	155,25	6-8-12
500	20"	508,00	495,40	6,3	800	784,20	7,90	138,10	117,65	192,75	6-8-12
550	22"	559,00	546,40	6,3	800	784,20	7,90	112,60	137,66	234,56	6-8-12
600	24"	610,00	595,80	7,1	900	882,60	8,70	136,30	152,47	278,80	6-8-12

*The data indicated in the table are for informative purposes. Yalçın Boru reserves its rights to modify these data.

PREINSULATED PIPE
 SERIES-3 IN ACCORDANCE WITH TS EN 253 STANDARDS

STEEL SERVICE PIPE					HDPE 100 CASING PIPE			INSULATION	PACKAGE PIPE WEIGHT	$\begin{aligned} & \text { STEEL } \\ & \text { PIPE } \\ & \text { UNIT } \\ & \text { WATER } \\ & \text { VOLUME } \end{aligned}$	PIPELENGTH (L)
Steel Pipe Nominal Diameter		Outer	Inner	Wall	Outer	Inner	Wall				
		Diameter	Diameter	Thickness	Diameter (d)	Diameter	Thickness	Thickness			
DN	inch	mm	mm	mm	mm	mm	mm	mm	kg / m	It / m	m
15	1/2"	21,30	17,30	2,0	110	104,00	3,0	41,35	2,66	0,27	6
20	3/4"	26,90	21,70	2,6	125	119,00	3,0	46,05	3,51	0,37	6
25	$1{ }^{\prime \prime}$	33,70	28,50	2,6	125	119,00	3,0	42,65	3,91	0,67	6
32	11/4"	42,40	37,20	2,6	140	134,00	3,0	45,80	4,82	1,09	6
40	11/2"	48,30	43,10	2,6	140	134,00	3,0	42,85	5,16	1,46	6
50	2 "	60,30	54,50	2,9	160	154,00	3,0	46,85	6,78	2,33	6
65	$21 / 2 "$	76,10	70,30	2,9	180	174,00	3,00	48,95	8,37	3,88	6-8
80	3"	88,90	82,50	3,2	200	193,60	3,20	52,35	10,41	5,35	6-8
100	$4 "$	114,30	107,10	3,6	250	242,80	3,60	64,25	15,11	9,01	6-8-12
125	$5{ }^{\prime \prime}$	139,70	132,50	3,6	280	272,20	3,90	66,25	18,37	13,79	6-8-12
150	$6{ }^{\prime \prime}$	168,30	160,30	4,0	315	306,80	4,10	69,25	23,75	20,18	6-8-12
200	8"	219,10	210,10	4,5	400	390,40	4,80	85,65	35,32	34,67	6-8-12
250	10"	273,00	263,00	5,0	500	488,80	5,60	107,90	50,61	54,33	6-8-12
300	12"	323,00	311,80	5,6	560	548,00	6,00	112,50	65,02	76,80	6-8-12
350	14"	355,60	344,40	5,6	630	616,80	6,60	130,60	74,95	93,16	6-8-12
400	$16 "$	406,40	393,80	6,3	710	695,60	7,20	144,60	95,02	121,80	6-8-12
450	18"	457,20	444,60	6,3	800	784,20	7,90	163,50	111,52	155,25	6-8-12
500	201	508,00	495,40	6,3	900	882,60	8,70	187,30	130,31	192,75	6-8-12
550	22"	559,00	546,40	6,3	900	882,60	8,70	161,80	149,87	234,56	6-8-12
600	$24 "$	610,00	595,80	7,1	1000	981,20	9,40	185,60	166,58	278,80	6-8-12

*The data indicated in the table are for informative purposes. Yalçın Boru reserves its rights to modify these data.

PREINSULATED 90° ELBOW IN ACCORDANCE WITH TS EN 448 STANDARDS

INNER PIPE	NOMINAL DIAMETER	DN	$\varnothing 25$	$\square 32$	040	050	965	980	0100	0125	0150	$\square 200$	$\emptyset 250$	$\square 300$	0350	0400	0450	0500	9600	0700	$\square 800$	0900	91000	01100	01200
		inch	$1 "$	$11 / 4{ }^{\prime \prime}$	$11 / 2^{\prime \prime}$	2"	$21 / 2^{\prime \prime}$	$3^{\prime \prime}$	$4{ }^{\prime \prime}$	$5 "$	$6 "$	8"	$10^{\prime \prime}$	$12^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$	$18{ }^{\prime \prime}$	$20^{\prime \prime}$	$24^{\prime \prime}$	$28^{\prime \prime}$	32 "	$36^{\prime \prime}$	$40^{\prime \prime}$	$44^{\prime \prime}$	$48^{\prime \prime}$
	OUTER DIAMEEER (d)	mm	33,7	42,4	48,3	60,3	76,1	88,9	114,3	139,7	168,3	219,1	273,0	323,9	355,6	406,4	572,2	508,0	610,0	71ו1	813,0	914,0	1.016,0	1.118,0	1.219,0
$\begin{aligned} & \text { CASING } \\ & \text { PIPE } \end{aligned}$	OUTER DIAMETER(D)	mm	90	110	110	125	140	160	200	225	250	315	400	450	500	560	630	710	800	900	1000	1200	1200	1400	1400
	LIENGTH		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1200	1500	1500	1500	1800	1800	1800	1800	2000	2000	2000

PREINSULATED
 45° ELBOW IN ACCORDANCE WITH TS
 EN 448 STANDARDS

INNER PIPE	NOMINAL DIAMETER	DN	025	032	940	050	065	980	$\emptyset 100$	0125	9150	9200	0250	$\emptyset 300$	0350	0400	0450	0500	9600	9700	0800	0900	91000	01100	$\emptyset 1200$
		inch	$1^{\prime \prime}$	$1^{1 / 4 \prime}$	$11 / 2^{\prime \prime}$	$2 "$	$2^{1 / 21}$	$3^{\prime \prime}$	$4{ }^{\prime \prime}$	$5 "$	$6 "$	$8^{\prime \prime}$	$10^{\prime \prime}$	$12^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$	$18^{\prime \prime}$	$20^{\prime \prime}$	$24 "$	$28^{\prime \prime}$	$32^{\prime \prime}$	$36^{\prime \prime}$	$40^{\prime \prime}$	$44^{\prime \prime}$	$48^{\prime \prime}$
	OUTER DIAMETER (d)	mm	33,7	42,4	48,3	60,3	76,1	88,9	114,3	139,7	168,3	219,1	273,0	323,9	355,6	406,4	572,2	508,0	610,0	711,1	813,0	914,0	1.016,0	1.118,0	1.219,0
$\begin{aligned} & \text { CASING } \\ & \text { PIPE } \end{aligned}$	$\begin{gathered} \text { OUTER } \\ \text { DIAMETER(D) } \end{gathered}$	mm	90	110	110	125	140	160	200	225	250	315	400	450	500	560	630	710	800	900	1000	1200	1200	1400	1400
	LIENGTH		1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1200	1500	1500	1500	1800	1800	1800	1800	2000	2000	2000

PREINSULATED STRAIGHTTEE

PREINSULATED ELEVATED
 TEE IN
 ACCORDANCE WITH TS
 EN 448 STANDARDS

PREINSULATED PARALLEL

 TEE IN ACCORDANCE WITH TS EN 448 STANDARDS

PREINSULATED REDUCING PIPE IN ACCORDANCE WITH TS
 EN 448 STANDARDS

INNER PIPE		NOMINAL DIAMETER		DN	๑ 25	๑ 32	๑ 40	950	065	080	¢ 100	๑ 125	¢ 150	¢ 200	๑ 250	¢ 300	¢ 350	¢ 400	¢ 450	¢ 500	$\checkmark 600$	¢ 700	¢ 800	0900	¢ 1000	01100	¢ 1200		
		Inch	$1 "$	$11 / 4{ }^{\prime \prime}$	$11 / 2^{\prime \prime}$	$2^{\prime \prime}$	$21 / 2^{\prime \prime}$	$3^{\prime \prime}$	4 "	$5^{\prime \prime}$	$6^{\prime \prime}$	8"	$10^{\prime \prime}$	$12^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$	18"	$20^{\prime \prime}$	$24^{\prime \prime}$	$28^{\prime \prime}$	$32^{\prime \prime}$	$36{ }^{\prime \prime}$	40"	$44^{\prime \prime}$	$48^{\prime \prime}$				
		OUTER DIAMETERI (d)	mm	33,7	42,4	48,3	60,3	76,1	88,9	114,3	139,7	168,3	219,1	273,0	323,9	355,6	406,4	457,2	508,0	610,0	711,1	813,0	914,0	1016,0	1118,0	1219,0			
CASING PIPE				OUTER DIAMETER (D_{1})		mm	90	110	110	125	140	160	200	225	250	315	400	450	500	560	630	710	800	900	1000	1200	1200	1400	1400
L, LENGTH [mm)					1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500	1500		
NOMI DIAME DN		OUTER DIAMEER(d_{2}) mm	$\begin{gathered} \text { CASI } \\ \text { OUTER } \end{gathered}$	NG PIPE DIAMEER $\left.D_{2}\right)$ mm												L. UZUNLUK [mm]													
20	3/4"	26,9		90	x	x	x	x	x	X	x	x																	
25	$1 "$	33,7		90		x	x	x	x	x	x	x	x																
32	$11 / 4{ }^{\prime \prime}$	42,4		110			x	X	x	x	X	x	x	x															
40	$11 / 2^{\prime \prime}$	48,3		110				x	x	x	x	x	x	x	x														
50	$2^{\prime \prime}$	60,3		125					X	x	x	X	x	X	x	x													
65	$21 / 2^{\prime \prime}$	76,1		140						x	x	x	x	x	x	x	x												
80	$3^{\prime \prime}$	88,9		160							x	x	x	x	x	x	x	x											
100	$4^{\prime \prime}$	114,3		200								x	x	x	x	X	x	x	x										
125	$5{ }^{\prime \prime}$	139,7		225									x	x	x	x	x	x	x	x									
150	$6^{\prime \prime}$	168,3		250										x	x	x	x	x	x	x	x								
200	$8{ }^{\prime \prime}$	219,1		315											x	x	x	x	x	x	x	x							
250	$10^{\prime \prime}$	273,0		400												x	x	x	x	x	x	x	x						
300	$12^{\prime \prime}$	323,9		450													x	x	x	x	x	x	x	x					
350	$14^{\prime \prime}$	355,6		500														x	x	x	x	x	x	x	x				
400	$16^{\prime \prime}$	406,4		560															x	x	x	x	x	x	x	x			
450	$18^{\prime \prime}$	457,2		630																x	x	x	x	x	x	x	x		
500	$20^{\prime \prime}$	508,0		710																	x	x	x	x	x	x	x		
600	$24^{\prime \prime}$	610,0		800																		X	x	x	x	x	x		
700	$28^{\prime \prime}$	711,0		900																			x	x	x	x	x		
800	$32^{\prime \prime}$	813,0		000																				x	x	x	x		
900	$36^{\prime \prime}$	914,0		200																					x	x	x		
1000	$40^{\prime \prime}$	1,016,0		200																						x	x		
1100	$44^{\prime \prime}$	1,118,0		400																							x		

PREINSULATED

FIXED POINT IN ACCORDANCE WITH TS EN 448 STANDARDS

 $3 / 4^{\prime \prime} 1^{\prime \prime} \begin{array}{llllllllllllllllllllll}11 / 4^{\prime \prime} & 1 / 2^{\prime \prime} & 2^{\prime \prime} & 2 & 1 / 2^{\prime \prime} & 3^{\prime \prime} & 4^{\prime \prime} & 5^{\prime \prime} & 6^{\prime \prime} & 8^{\prime \prime} & 10^{\prime \prime} & 12^{\prime \prime} & 14^{\prime \prime} & 16^{\prime \prime} & 18^{\prime \prime} & 20^{\prime \prime} & 24^{\prime \prime} & 28^{\prime \prime} & 32^{\prime \prime} & 36^{\prime \prime} & 40^{\prime \prime} & 44^{\prime \prime}\end{array}$

PREINSULATED COMPENSATOR

IN
ACCORDANCE WITH TS
EN 448
STANDARDS

iç BORU	ANMA C.API	DN	940	950	065	080	9100	9125	9150	0200	0250	9300	9350	9400	0450	0500	0600	9700	9800
		inch	$11 / 2^{\prime \prime}$	$2^{\prime \prime}$	$21 / 2^{\prime \prime}$	$3^{\prime \prime}$	$4^{\prime \prime}$	$5^{\prime \prime}$	$6^{\prime \prime}$	$8^{\prime \prime}$	$10^{\prime \prime}$	$12^{\prime \prime}$	$14^{\prime \prime}$	$16^{\prime \prime}$	$18^{\prime \prime}$	$20^{\prime \prime}$	$24^{\prime \prime}$	$28^{\prime \prime}$	$32^{\prime \prime}$
	DIS CAPI $\left(d_{1}\right)$	mm	48,3	60,3	76,1	88,9	114	140	168	219	273	324	356	406	457	508	610	711	813
$\begin{aligned} & \text { KILF } \\ & \text { BORU } \end{aligned}$	$\begin{aligned} & \text { DIS CAPI } \\ & \text { (D) } \end{aligned}$	mm	110	125	140	160	200	225	250	315	400	450	500	560	630	710	800	900	1000
	$\begin{gathered} \text { dis capl } \\ \left(\text { Ki }^{\prime}\right) \end{gathered}$	mm	140	160	180	200	250	280	315	400	450	500	560	630	710	800	900	1000	1100
TOPLAM BOY (L) mm			1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000

All compensators are manufactured as externally pressured and with welding neck, from undulation material AISI 316 L stainless steel customised pressure category according to the customer's choice, and $30-60-90-120 \mathrm{~mm}$ and 180 mm (double) according to the expansion volume.

FIELD INSULATION APPLICATION WITH JOINT SET

After the welding of the pipes and fittings, a joint set will be needed for insulating the non-insulated part on the site.

The joint set comprises the parts below:

1. HDPE cover
2. Heat-shrink tape
3. Polyol and Isocyanate
4. Plug

The distances between the two preinsulated pipes are prepared according to the standard.

Before the assembly and welding of the pipes, the cover must be on the pipe.

After welding, the outer surface of the casing is cleaned and heated with the torch.
$!$

Torch must not be used in windy and cold weather. Please use it only in warm and still weather.

Pipes are welded before insulation.

The surface is cleaned off from the dirt and trimming that occur after heating.

Marking is made as both two casings will match, and the cover is placed according to these markings.

8

The heat-shrink tapes that will be used for the points to be bonded are prepared.

The heat-shrink tape is heated with the torch and the cover and HDPE 100 pipe are bonded.

7

While the cover is placed, it has to be placed over the hole into which the insulating material will be spilled.
$12 \quad 13$

After the welding process, it is waited for the heat-shrink tapes to cool down (at least for 5 minutes) and the joints are checked.

The heat-shrink tapes are covered around the insulation point as half will be applied on the cover and other half on the casing.

The heating process is continued until the heat-shrink tapes get uniform.

11

After completing all processes, the raw material given at the weight according to cover sizes are put in a bowl and mixed.

The mixed POL and ISO is spilled into the hole on the sleeve and is waited until the air goes out.

14

15

-After the polyol and isocyanate are mixed together, the mixture must be shaken and be applied by being spilled into the hole on the cover.

- The process of mixing, shaking and spilling the raw materials must continue for maximum 15 seconds. If this duration is exceeded, the raw material would foam
up.
- The hole on the cover must be closed with the plug as the raw material starts foaming up.

As the polyol and isocyanate can be delivered in batch in the volumes that are required for you to mix, is requested, it can separately be prepared on site for each bonding application.

$!$

SYSTEM COMPONENTS

1. Preinsulated pipe with a couple of copper conductive embedded into polyurethane layer (wires must be at 9-3, 10-14 or 11-13 positions and their distance from the steel pipe must be min. 15 mm . max. 20 mm .).
2. If detector and failure sensor electronic devices (leakage monitoring system are used, the point of failure can be identified with a particular tolerance; however, if only a detector is preferred, only the information whether there is a failure or not is obtained.)
3. Power supplies

SYSTEM COMPONENTS

1. Steel Pipe
2. Polyurethane layer
3. HDPE outer casing
4. 1.5 mm 2 non-insulated copper conductive (tin coated) (the distance between the steel pipe and wire must be 15 to 20 mm .)
5. 1.5 mm 2 non-insulated copper conductive (the distance between the steel pipe and wire must be 15 to 20 mm .)
6. 6. The label indicating the information regarding the company and the pipe.

Detector System

The detector systems that operate in connection with the pipes on the line detect on which point of the line the failure is. ($4 \times 1000 \mathrm{~m}$. or $8 \times 7000 \mathrm{~m}$. preinsulated pipe is controlled through a single detector.)

LEAKAGE DETECTION SYSTEM

Purpose: It is a system in line with eliminating the heat loss, corrosion and the possibility of the system to get disengaged in networks on which preinsulated pipe is used, that may be caused due to leaking water into the system either because of external factors or the failures in pipe joint weldings. The failure on a monitoring system depends on the lengths of the wires regardless of which system is used on identifying the failure.

CALCULATIONS

Determining Pipe Diameter

The pipe diameter calculation plays a major role on both the problem-free operation of the system and economically with respect to operating costs. The losses occurring in the pipes with internal friction and fluid rate have to be kept at an optimum value. It is possible to ensure these with the calculations indicated below.

As the point of origin of these calculations, generally two factors are worked through regarding heating. Firstly, it can be stated as the water to be transmitted having a particular flow rate and a calculation being made accordingly. However, it has to be taken into consideration that in the calculation of the diameter of the pipe, selecting a diameter at the point of origin and making the control according to that assumption is the most reliable method.
$\mathrm{V}=\frac{4 * \mathrm{Q}}{\pi * \mathrm{D}_{\mathrm{in}}{ }^{2} * 3600}$
The formula above gives us the fluid rate, and its symbols and units are stated below:

V (m/sn) : Fluid rate
$\mathrm{Q}(\mathrm{m} 3 / \mathrm{h}) \quad$: Flow rate
Diç (m) : Carrier pipe inner diameter
After obtaining the fluid rate, we calculate the Reynolds Number that will give us an idea regarding the flow characteristics.
$\operatorname{Re}=\frac{\mathrm{p}^{*} \mathrm{~V} * \mathrm{D}_{\mathrm{i}, \mathrm{c}}}{\mu}$
The descriptions and units of the symbols in this formula are as follows:

Re : Reynolds number
$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right) \quad:$ Fluid density
$\mu(\mathrm{cP}) \quad:$ Fluid dynamic viscosity

After the Reynolds number, we need to find the "relative roughness" which is the final data that we need for calculating the friction loss to be caused by the present assumptions.
$\varepsilon_{\mathrm{b}}=\frac{\varepsilon}{\mathrm{D}_{\mathrm{in}}}$

The units and the symbols in this formula:

عb : Relative roughness
$\varepsilon(\mathrm{m})$: Carrier pipe roughness coefficient

The results reached inner are adequate for finding the friction coefficient on the present flow. "Moody Diagram" is used for determining this coefficient.
Moody Diagram

The formula below is the formulised version of the friction coefficient (f) that will be obtained out of this diagram.
$f=\left[\frac{1}{-1.8^{*} \log \left(\frac{6.9}{\operatorname{Re}}+\left(\frac{\varepsilon_{\mathrm{b}}}{3.7}\right)^{1.11}\right)}\right]^{2}$
Finally, the formula below is used for calculating the pressure loss of the line.
$\Delta \mathrm{P}\left(\mathrm{N} / \mathrm{m}^{2}\right) \quad:$ Pressure decrease

$$
\begin{array}{ll}
\mathrm{L}(\mathrm{~m}) & \text { : Length of the line } \\
\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right) & \text { : Fluid Density } \\
\Delta \mathrm{P}=\frac{f^{*} \mathrm{~L} * \mathrm{~V}^{2} * \rho}{\mathrm{D}_{\mathrm{in}}^{*} 2}
\end{array}
$$

After determining the pressure loss, it is checked whether the line has reached the range required for operating economically and problem-free. The suitable pipe diameter is determined this way.

Calculation of Termal Expansion

One of the most significant issues regarding the systems in which hot fluids are used is the expansion occurring on the pipes.

Thermal expansion occurs on the service pipe due to the effect of the fluid passing through the service pipe. This issue must definitely be taken into consideration in the application of heating lines. With the calculations indicated below, the expansion status of the line must be determined, and the expansions and the failures that may emerge due to these must be prevented using preinsulated compensators. The calculations are made with the assumption of the existence of steel service pipe, and it is grouped into two according to the principle whether the application is under or above the ground.

The calculation of expansion for the preinsulated pipes, the installations of which are to be done above the ground, is as follows:
$\Delta \mathrm{L}=\alpha^{*} \Delta \mathrm{~T} * \mathrm{~L}$
The symbols and units in this formula is as follows:

$\Delta \mathrm{L}(\mathrm{m})$: Expansion volume of the pipe
$\mathrm{a}\left(1 /{ }^{\circ} \mathrm{C}\right)$: Expansion Coefficient (1,2*10-5 is taken for steel)
$\Delta \mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$: The difference of temperature between the fluid and the temperature at the moment of line assembly
(Tfluid - Toutside)	
$\mathrm{L}(\mathrm{m})$: Length of line that is exposed to expansion In assemblies made under the ground, it is necessary to take into consideration the friction force between the earth and the pipe.

$$
\begin{gathered}
\Delta \mathrm{L}=(\alpha * \Delta \mathrm{~T} * \mathrm{~L})-\left(\frac{\mathrm{F} * \mathrm{~L}^{2}}{2 * \mathrm{E} * \mathrm{~A}}\right) \\
\mathrm{F}=\mu * \mathrm{D} * \pi * \mathrm{z} * \mathrm{p} * \mathrm{~g}
\end{gathered}
$$

The units and descriptions of the symbols in these formula are as follows:
$\mathrm{F}(\mathrm{N} / \mathrm{m})$: The friction force applied by the natural ground on the pipe
$\mu \quad:$ Friction coefficient (It is taken 0,4 for earth)
$\mathrm{D}(\mathrm{m}) \quad$: Casing pipe outer diameter
z (m) : The distance from the axis of the pipe to the ground surface
$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$: Ground density (For soil 1800 can be taken)
$\mathrm{g}\left(\mathrm{m} / \mathrm{sn}^{2}\right)$: Gravitational acceleration (It is taken 9,82)
$\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$: Elasticity module (It is taken $2,1 * 10^{5}$ for steel)

A (mm^{2}) : Carrier pipe cross sectional area
The expansion force on the pipes (Newton) can as well be calculated by the formula below:
$\mathrm{P}=\Delta \mathrm{T} * \alpha^{*} \mathrm{E} * \mathrm{~A}$
The point to take into consideration here is that the permitted tensile stress for steel in St 37 quality must not exceed $150 \mathrm{~N} / \mathrm{mm} 2$. ($183 \mathrm{~N} /$ mm 2 for St 37-2, $277 \mathrm{~N} / \mathrm{mm} 2$ for St 52)

With the purpose of reducing the use of compensator in embedded systems, the pipe length where the extension will be zero can be determined and the line can be fixed with preinsulated fixed support pipe at this point, hence the expansion can be absorbed without
using a compensator. The value to be calculated through the formula below can be used for determining the length where fixing is to be done.

$$
L_{\max }=\frac{2 * \mathrm{P}}{\mathrm{~F}}
$$

During this calculation, it is a significant factor to take into consideration that the line is not too long and it has to be a straight line.

Except of the use of compensator, in places that are suitable as the area as well, the expansion on the pipes can be absorbed by making the assembly in Z or U forms in the light of the measurements given below:

Example:
Ø125 For
$\Delta L_{1}=24 \mathrm{~mm}$
$\Delta L_{2}=62 \mathrm{~mm}$
$\Delta \mathrm{L}=86 \mathrm{~mm}$
$a=3,3 \mathrm{~m}$
$b=1,65 \mathrm{~m}$

Example:

Ø125 for
$\Delta L_{1}=24 \mathrm{~mm}$
$\Delta \mathrm{L}_{2}=62 \mathrm{~mm}$
$\Delta \mathrm{L}=86 \mathrm{~mm}$
$a=4,8 \mathrm{~m}$
$\mathrm{b}=2,4 \mathrm{~m}$

Calculation of Heat Loss

There are many factors that determine the heat loss in preinsulated pipes. We can list these factors as below.

- Type and thickness of the carrier pipe.
- Thickness of the casing pipe.
- Thickness of the polyurethane insulation.
- Thickness of the rockwool insulation (in rockwool reinforced package pipes).
- The place of assembly (under or above the ground).

The calculation of heat loss can be made following the method below.

Firstly, the resistance is calculated for each layer. The heat loss of the insulated package pipe is calculated.

- Carrier pipe inner transmission resistance;
$\boldsymbol{R}_{\text {tdinner }}=\frac{1}{\boldsymbol{h}_{\text {liquid }} * \pi * \boldsymbol{D}_{\text {inner }}}$
$\mathrm{Rt}_{\text {inner }}\left(\mathrm{m} .{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$: Carrier pipe inner transmission resistance
$\mathrm{D}_{\text {inner }}(\mathrm{m}) \quad:$ Carrier pipe inner diameter
$\mathrm{h}_{\text {liquid }}\left(\mathrm{W} / \mathrm{m} 2 .{ }^{\circ} \mathrm{C}\right): \begin{gathered}\text { Liquid transmission } \\ \text { coefficient }\end{gathered}$
- Carrier pipe thermal conductivity resistance;
$\boldsymbol{R}_{t b i}=\frac{\ln \left(\frac{\boldsymbol{D}_{\text {outer }}}{\boldsymbol{D}_{\text {inner }}}\right)}{2 * \pi * \lambda_{t b}}$
$\mathrm{R}_{\mathrm{tbi}}\left(\mathrm{m} .{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$: Carrier pipe thermal conductivity resistance
$\mathrm{D}_{\text {outer }}(\mathrm{m}) \quad$: Carrier pipe outer diameter
$\lambda_{\mathrm{tb}}\left(\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right) \quad$: Carrier pipe thermal conductivity coefficient

Polyurethane insulation material thermal conductivity resistance
$\boldsymbol{R}_{\text {pur }}=\frac{\ln \left(\frac{d_{\text {outer }}}{\boldsymbol{D}_{\text {inner }}}\right)}{2 * \pi * \lambda_{\text {pur }}}$
$\begin{array}{ll}\mathrm{R}_{\text {pur }}\left(\mathrm{m} .{ }^{\circ} \mathrm{C} / \mathrm{W}\right) & \begin{array}{l}\text { : PUR insulation } \\ \text { thermal conductivity } \\ \text { resistance }\end{array} \\ \mathrm{D}_{\text {inner }}(\mathrm{m}) & \begin{array}{l}\text { : Casing pipe inner } \\ \text { diameter }\end{array}\end{array}$
$\lambda_{\text {pur }}\left(\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right) \begin{aligned} & : \text { PUR insulation } \\ & \\ & \\ & \\ & \text { thermal conductivity } \\ & \text { coefficient }\end{aligned}$

- Casing pipe thermal conductivity resistance

$$
\boldsymbol{R}_{k b}=\frac{\ln \left(\frac{d_{\text {outer }}}{d_{\text {inner }}}\right)}{2 * \pi * \lambda_{k b}}
$$

$\mathrm{R}_{\mathrm{kb}}\left(\mathrm{m} .{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$: Casing pipe thermal conductivity resistance
$\mathrm{D}_{\text {outer }}(\mathrm{m}) \quad$: Casing pipe outer diameter
$\lambda_{\mathrm{kb}}\left(\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)$: Casing pipe thermal conductivity coefficient

- Thermal conductivity resistance of the earth (with the assumption of underground assembly)

$$
R_{t}=\frac{\ln \left(\frac{4 z}{D_{\text {outer }}}\right)}{2 * \pi * \lambda_{t}}
$$

$R_{t}\left(\mathrm{~m} .{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$: Ground thermal conductivity resistance
$Z(m) \quad:$ Ground filling height
$\lambda_{t}\left(\mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)$: Ground pipe thermal conductivity coefficient

TS EN 253

TS EN 448

TORK STANDARDLARI EnstitOso tÜrs stamdardLarima uycuiluk relgesi TURELBA STANDANLDS instimution

TS EN 12201-2

TÜK STMANDARDLARI ENSTITOSO TURK STARDARDLARIMA UYEUNLUKTITESO Cumbleiti or cowfonand institution Then

nenturn
-4pration
y 782
yonerysum
 yritis Hint
프표표

ISO 14001

ISO 18001

British

WALCIN aORE дEOTERMAL IMALAT

-mun

OHSAS 18001:2007

ontrousinnact inumywatia

(2nvin
Frymintimen

ISO 9000

